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Abstract. We present GPUMixer, a tool to perform mixed-precision floating-
point tuning on scientific GPU applications. While precision tuning tech-
niques are available, they are designed for serial programs and are accuracy-
driven, i.e., they consider configurations that satisfy accuracy constraints,
but these configurations may degrade performance. GPUMixer, in con-
trast, presents a performance-driven approach for tuning. We introduce
a novel static analysis that finds Fast Imprecise Sets (FISets), sets of
operations on low precision that minimize type conversions, which often
yield performance speedups. To estimate the relative error introduced
by GPU mixed-precision, we propose shadow computations analysis for
GPUs, the first of this class for multi-threaded applications. GPUMixer
obtains performance improvements of up to 46.4% of the ideal speedup
in comparison to only 20.7% found by state-of-the-art methods.

1 Introduction

GPU accelerated computing has reached a tipping point in the high-performance
computing (HPC) market. As HPC scientific applications increasingly rely on
GPU accelerators to perform floating-point arithmetic, tools to extract the maxi-
mum performance out of floating-point intensive computations are also becoming
increasingly important.

This paper presents GPUMixer, the first tool to tune floating-point mixed-
precision scientific applications on GPUs. While most mission-critical scientific
applications use double-precision floating-point arithmetic (FP64) because of ac-
curacy requirements, current generations of GPU architectures have higher peak
computation rates in single-precision floating-point arithmetic (FP32) or lower
precision [19]. To take advantage of the performance that lower precision offers,
programmers can use mixed-precision computing to perform some computations
in high precision (e.g., FP64) and some in low precision (e.g., FP32, or lower).
GPUMixer provides a practical method to select the computations to be per-
formed on FP32 or FP64 precision so that (a) user-defined accuracy constraints
are maintained and (b) performance is significantly improved.

? This work was performed when P. C. Wood and R. Singh were at Purdue University.
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Tuning mixed-precision programs is challenging. Programmers are interested
in finding mixed-precision configurations, i.e., sets of operations on more than
one precision, that satisfy both accuracy and performance demands. However,
because the number of possible configurations is very large, manually exploring
all configurations is impractical, even in small programs. For FP64/FP32 mixed-
precision programs, for example, the number of possible configurations is 2N ,
where N is the number of floating-point arithmetic operations.

In the domain of serial applications, a number of techniques for automatic
tuning have been proposed to address this problem [3,4,6,11,23,22,13,7,16], how-
ever, practical and efficient tuning tools for multi-threaded applications are
scarce, making mixed-precision programming for GPUs hard.

Irrespective of their architectural focus, a limitation of the majority of these
methods is that they focus on mixed-precision tuning with accuracy as a target.
That is, the configuration space search is driven by accuracy constraints in the
program solution. We call this methods accuracy-driven approaches. Because
performance is not explicitly modeled, these approaches have the disadvantage
of suggesting configurations that provide no performance guarantees, and in
many cases configurations that degrade performance.

GPUMixer, on the other hand, is designed as a performance-driven approach.
We introduce the concept of Fast Imprecise Sets (FISets), a set of arithmetic
operations in a GPU kernel on which the data that enters and that leaves the set
is in high precision, but on which the operations of the set are in low precision
(hence an imprecise set). A FISet has the property that the ratio of arithmetic
operations to cast operations is high; thus, an FISet is a configuration that,
almost always, yields performance speedups (hence a fast set).

We demonstrate that FISets can be found via static analysis, which elimi-
nates the need for running configurations to determine whether they provide per-
formance speedup or not, as existing techniques do (e.g., [7,16]). Our algorithm
for finding FISets locally maximizes the number of low-precision arithmetic op-
erations while it minimizes the number of type cast operations in input/output
boundaries of operation sets.

To find the FISets that also satisfy accuracy requirements, we perform shadow
computations, a dynamic analysis that calculates an approximation of the rel-
ative error introduced when the precision is decreased from FP64 to FP32 in
GPU kernels. While previous shadow computations techniques exist to tune se-
rial programs [22,13], to the best of our knowledge, we present the first shadow
computations framework for multi-threaded/GPU programs.

The contributions of this paper are:

1. We introduce the concept of FISets, floating-point configurations that pro-
vide performance speedups, and present an algorithm to find them statically.

2. We describe an implementation of our algorithm in the LLVM compiler [14]
for the NVIDIA CUDA programing model. We show that our method can
be applied efficiently to realistic multi-kernel GPU programs.
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3. We implement the first GPU shadow computations framework for mixed-
precision tuning, a dynamic analysis to compute the relative error introduced
when the precision of FP64 operations is decreased to FP32.

4. We evaluate our implementation in three computationally intensive CUDA
programs. We show that our approach finds configurations that are always
faster than the default (all in FP64) for a given error threshold and input.

We compare our approach to the Precimonious approach [23,22], a state-of-
the-art method for mixed-precision tuning on serial programs. On our evaluation,
our approach finds performance speedups that can vary between 9.8%–46.4%
of the ideal speedup, whereas the comparison approach finds speedups of only
1.4%–20.7%.

2 Related Work

Formal Methods. FPTuner [3] is a rigorous approach for precision tuning based
on Symbolic Taylor Expansions and interval functions; FPTuner meets error
thresholds across all program inputs, however it has been demonstrated only on
small programs and it has limitations handling conditional expressions. Rosa [6]
is a source-to-source compiler that uses an SMT solver to annotate a program
with mixed-precision types; the compiler operates on the Scala programming
language. Paganelli and Ahrendt [21] present an approach that formally proves
that an increased precision in a variable causes only a limited change of the
result; it uses SMT solvers and is demonstrated on FPhile, a toy sequential
imperative language. Other formal methods include Salsa [5] and S3FP [4].

Although these methods perform rigorous analysis and can verify properties
for all inputs, they scale poorly and/or do not support common HPC program-
ing languages (C/C++) and coding patterns (branches and loops), thus their
applicability to realistic HPC applications is limited.

Heuristics for Automated Search. These methods cannot prove prop-
erties but they are able to scale to real-world programs, and as a result have
broader practical utility. Our approach falls in this category.

CRAFT [11,12] performs an automated search of a program’s instruction space,
determining the level of precision necessary in the result of each instruction to
pass a user-provided verification routine assuming all other operations are done
in high precision, i.e., FP64. While it uses heuristics to sample a fraction of
the search space, it can be very time consuming even for very small programs
(worst case complexity is O(2N )). Precimonious [23] uses the delta-debugging
algorithm to search for configurations. While this algorithm helps in speeding
up the search, this can still lead to a high number of builds and runs of the
program. Blame Analysis [22] finds configurations that satisfy user-given error
constraints, using a single execution of the program. The analysis finds a set of
variables that can be in single precision, while the rest of the variables are in
double precision; however, the output configurations may or may not improve
performance, so to use the analysis in practice one must perform runs of the
program to determine which configurations actually improve performance. The
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experiments in [22] use Precimonious to perform the program runs in a guided
manner. ADAPT [16] uses algorithmic differentiation to provide estimates about
the final output error, which can be used for mixed-precision tuning.

The above techniques are accuracy-driven approaches, i.e., the configuration
space search is driven by accuracy constraints in the program solution. Because
performance is not explicitly modeled—the cost of operations is seen as a black
box—these approaches may suggest configurations that provide no performance
guarantees. GPUMixer, in contrast, is driven by performance gains.

A recent approach, HiFPTuner [7], considers performance by avoiding fre-
quent precision casts on program variables. This approach, however, focuses on
serial programs and is not available on GPUs and/or CUDA. Another difference
is that [7] requires dynamic profiling to build a weighted dependence graph of
the program, which is non-trivial to build efficiently on CUDA. One of the chal-
lenges to gather the per-instruction error introduced on multi-threaded code is
to do it with reasonable overhead (one of the problems that we solve partially
in our shadow computation framework). Because of the above limitations, we
compare our method to the Precimonious method [23,22] instead of comparing
it to [7]. The Precimonious approach (via delta debugging) is a more generic
approach that can be easily adapted to GPUs (see Sec. 5.1 for more details).

3 Background and Overview

3.1 Example of Mixed-Precision Tuning

To illustrate the problem of mixed-precision tuning, we present an example using
a CUDA kernel from an N-body simulation [18]. Listing 1.1 shows an implemen-
tation of the force calculation in an n-body simulation obtained from [8]. After
the kernel calculates the forces and velocities of particles, the positions of the
particles, x, y, and z, are updated in the main function.

Table 1: Error and speedup for different configurations of Listing 1.1 on a NVIDIA
Tesla P100 GPU

Case x y z Error Speedup (%)

1 -0.599775587166981 -0.906326702752302 -0.217694232807352
2 -0.508669376373291 -0.906326711177825 -0.217694222927093 15.19 53.70
3 -0.575293909888785 -0.906326702752302 -0.217694232807352 4.08 5.78
4 -0.611327409124778 -0.906326702752302 -0.217694232807352 1.93 -43.35
5 -0.588951610438680 -0.906326702752302 -0.217694232807352 1.80 11.69

We perform mixed-precision tuning on the kernel variable declarations to find
a configuration that yield both accurate results and a performance speedups. The
baseline configuration is where all variables are declared as FP64, i.e., as double,
the one shown in Listing 1.1. To illustrate the calculation of the error introduced
by mixed-precision, we focus on the error introduced to the particle positions
(x, y, and z) for a single particle (i=0). Programmers of scientific codes may
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1 __global__ void bodyForce(double *x, double *y,
2 double *z, double *vx , double *vy , double *vz,
3 double dt, int n)
4 {
5 int i = blockDim.x * blockIdx.x + threadIdx.x;
6 if (i < n) {
7 double Fx =0.0; double Fy =0.0; double Fz =0.0;
8 for (int j = 0; j < n; j++) {
9 double dx = x[j] - x[i];

10 double dy = y[j] - y[i];
11 double dz = z[j] - z[i];
12 double distSqr = dx*dx + dy*dy + dz*dz + 1e-9;
13 double invDist = rsqrt(distSqr);
14 double invDist3 = invDist * invDist * invDist;
15 Fx += dx*invDist3; Fy += dy*invDist3; Fz += dz*invDist3;
16 }
17 vx[i] += dt*Fx; vy[i] += dt*Fy; vz[i] += dt*Fz;
18 }
19 }

Listing 1.1: Force computation in an N-body simulation

define their own metric for error, however, for this illustrative case, we define
the relative error introduced by mixed-precision as: error = (|(x−x0)/x|+ |(y−
y0)/y| + |(z − z0)/z|) ∗ 100.0, where x, y, z are the particle positions for the
baseline, and x0, y0, z0 are the particle positions for a new configuration.

Table 1 shows the particle values, error, and performance speedup of four
configuration with respect to the baseline, case 1. Case 2 shows the configuration
where all variables in the kernel are declared as FP32, i.e., as float. We observe
that while the speedup is significant, 53%, the error is high, 15.19. Case 3 shows
the case where only variable invDist3 is declared as FP32 and the rest as FP64—
in this case the error decreases, but the speedup is not too high, only 5%. Case 4
shows an interesting case: when the variable invDist3 is the only one declared
as FP32, the error is very low, but the speedup is negative, i.e., performance
degrades. Case 5 shows the best we found when the distSqr,invDist, and
invDist3 variables are declared as FP32: the error is lower than as in case 4 while
the speedup is about 11%. This example illustrates that some configurations can
produce low performance speedup or even performance degradation; the goal of
our approach is to find via static analysis configurations such as 3 and 5 that
improve performance and discard cases such as 4.

3.2 Configurations

While mixed-precision configurations can be expressed in terms of the precision
of variable declarations (as in the previous example), a more precise approach is
to express configurations in terms of the precision of floating-point operations.
The reason behind this is that a variable can be used in multiple floating-point
operations; the precision of each of these operations can be decreased/increased.

More formally, given a program with N floating-point arithmetic operations
and two classes of floating-point precision, e.g., FP32 and FP64, a configuration
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Table 2: Classes of configurations of a program
Satisfy accuracy constraints Improve performance Class

Yes Yes A
Yes No B
No Yes C
No No D

kernel1
kernel2
kernel3

Profiling run

Compiler 
Static 

Analysis

Accuracy-
driven 

analysis

Fast
Mixed-Precision 
Configurations

GPU Program
(optional)

GPU program
•Performance speedup
•Accuracy constraints 
satisfied

Dynamic analysis

Fig. 1: Workflow of the approach.

is a set of operations on which a subset of n1 operations are executed in one
precision and a subset of n2 operations are executed in another precision, such
that n1 +n2 = N . For k classes of floating-point precision, subsets of operations
can be executed on different precision, such that n1 +n2 + . . .+nk = N . Table 2
shows the four possible classes of mixed-precision configurations. The goal is to
automatically find configurations that belong to class A.

3.3 Overview of our Approach

Figure 1 shows the overview of our approach. Given a GPU program, we option-
ally run a profiling run to determine kernels on which precision reduction can
potentially give the highest performance benefits, e.g., by analyzing the kernels
where the application spends most of its time or kernels that are computationally
intensive. Note that this step is optional—if the programmer is not interested
in profiling the application, our method analyzes all kernels.

Next, the compiler transforms kernels into an intermediate representation
and searches for code regions where precision reduction could speedup the pro-
gram execution, i.e., FISets. For each identified case, the compiler automatically
performs code transformations and generate a program configuration. This con-
figuration will likely yield a performance speedup when executed, thus it belongs
to P = A ∪ C (see Table 2).

Finally, since some of the configurations in P may not satisfy the user accu-
racy constraints, configurations must be analyzed to identify those that satisfy
such constraints. Note that the user is free to use any existing accuracy-driven
tuning method that is available in conjunction with FISets. However, since there
is no accuracy-driven analysis available for GPUs, we develop our own method
(shadow computations for GPUs), to fill this gap.
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R3 = MUL, R1, R2

R4 = ADD, R3, 1.0

R5 = DIV, R4, 2.0

R6 = ADD, R4, R5

…

R1 = LOAD &A R2 = LOAD &B

R3 = MUL, R1, R2

R5 = DIV, R4, 2.0

R6 = ADD, R4, R5

…

R2 = LOAD &BR1 = LOAD &A

R4 = ADD, R3, 1.0

R3 = MUL, R1, R2

R4 = ADD, R3, 1.0

R5 = DIV, R4, 2.0

R6 = ADD, R4, R5

…

R1 = LOAD &A R2 = LOAD &B

Step 1:  Arithmetic-to-Cast
Operations Ratio = 1:3

Step 2:  Arithmetic-to-Cast
Operations Ratio = 2:3

Step N:  Arithmetic-to-Cast
Operations Ratio = 4:3

…

R3_ = mul, R1_, R2_

R1 = LOAD &A R2 = LOAD &B

R4 = ADD, R3, 1.0

R1_ = trunc R1 R2_ = trunc R2

R3 = ext R3_

In-edge

Out-edge

R3_ = mul, R1_, R2_

R1 = LOAD &A R2 = LOAD &B

R4_ = add, R3_, 1.0

R1_ = trunc R1 R2_ = trunc R2

R5 = DIV, R4, 2.0

R6 = ADD, R4, R5

…

R4 = ext R4_

Required code transformation to reduce precision

Required code transformation to reduce precision

Fig. 2: Illustration of the algorithm to find FISets.

4 Approach

We describe our approach to model performance of mixed-precision code re-
gions via static analysis with FISets, and our shadow computations approach to
compute the error of mixed-precision configurations in GPUs.

4.1 Kernel Intermediate Representation

We use the NVVM IR [17] as the intermediate representation for GPU kernels.
This representation is based on the LLVM IR and allows us to use high-level lan-
guage front-ends, such as Clang to generate NVVM IR. Our approach performs
transformation on the NVVM IR, a binary format to represent CUDA kernels.

4.2 FISet Design

The base working abstraction of FISets is a data dependence graph G = (V,E).
This is a directed graph whose nodes V represent NVVM IR instructions whose
edges E represent dependencies between nodes. We assume that the compiler
(in our case, LLVM) generates a data dependence graph for each kernel.

Roughly speaking, a FISet, which we denote as Φ, is a group of operations v ∈
V on which the data that enters and that leaves the group is in high precision, i.e.,
FP64, and on which the operations that compose the group are in low precision,
i.e., FP32. A FISet can contain both arithmetic floating-point operations and
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non-arithmetic operations, such as comparison or select operations, that join
together groups of arithmetic operations.

Type Conversions. Any mixed-precision approach incurs type conversion
operations, or casting, to transform data from one precision to another. Type
conversions are expensive in GPU architectures. Our algorithm to find a Φ in a
kernel attempts to minimize the number of conversion operations and to maxi-
mize the number of floating-point operations in the set.

A key idea of the algorithm is that if we can perform conversions only at
the beginning and at the end of a large sequence of floating-point operations
that have high degree of dependence among them, we can increase the ratio of
arithmetic-to-cast operations, therefore increasing the arithmetic throughput of
the code region. Formally, we define the arithmetic-to-cast operations ratio for
a code region as

rac = O/C, (1)

where O is the number of floating-point operations and C is the number of
casting operations.

4.3 FISet Illustration

Consider a portion of a graph as shown in the beginning of Fig. 2, where two data
values are loaded and stored into registers R1 and R2, which are then used by a
multiplication. In step 1, the algorithm considers the code transformations that
are required to lower the precision of the multiplication operation. In this exam-
ple, we use a three-input instruction format with operations in FP64 denoted in
upper case (e.g., MUL), and operations in FP32 in lower case (e.g., mul).

The second column of step 1 in the figure shows the required transformation
to reduce the precision. Since data in registers R1 and R2 is in FP64, we need to
perform two type conversions to truncate their data to FP32. After the multi-
plication in FP32 is performed, we need to extend the result to FP64, incurring
another conversion (from FP32 to FP64). In this step, rac = 1/3. This ratio will
likely not improve performance; in fact, it will degrade performance since for the
same MUL operation we are performing three additional instructions, i.e., type
conversion operations. The goal of the algorithm is to find cases where rac > 1.0.

In step 2 (second row of the figure), we consider the neighbors of the pre-
vious MUL operation. Here, neighbors are operations that depend on MUL and
operations that influence MUL. Since the only operations that influence MUL are
load operations, we do not consider them (they are not arithmetic floating-point
operations); however, we consider the ADD operation that depends on the result
of MUL. The second column of step 2 shows the required transformation to reduce
the precision, which would produce rac = 2/3; this can be easily seen by notic-
ing that there would be two arithmetic operations and three type conversions,
rac = O/C = 2/3 after the corresponding transformation. Since rac < 1.0, the
algorithm keeps expanding the neighbors set and performs the same estimations.

Finally in step N we find a set with rac > 1.0, i.e., rac = 4/3 (see last part
of Fig. 2). Here we declare this set a Φ.
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4.4 FISet Properties and Algorithm

Loops. If all nodes of a FISet are in the same loop (or loop level), or there is
no loop in the kernel, we do not do anything special because all the instructions
will be executed the same number of times, which will not affect rac; this is
the common case for most kernels. When this is not the case, we consider the
following two cases—we assume kernels can have nesting loops, L0 > L1 > L2 >
..., where L0 encloses L1, L1 encloses L2, and so on:

– Arithmetic operation nodes are in loop level Lx and conversions are in loop
level Ly, where Lx > Ly. We assume that the arithmetic operations will be
executed equal or more times than the conversions so we do not do anything
special. Note that this applies even for Lx ≥ Ly, for a given input. In this case,
rac may be higher than expected, which is fine for performance speedups.

– Arithmetic operation nodes are in loop level Lx and conversions are in loop
level Ly, where Ly > Lx. In this case, conversions may be executed more times
than arithmetic operations. We use a heuristic to handle this case: if we find
the same number of arithmetic operations as the number of conversions in the
loop that contains the conversions, we allow this to be a FISet ; otherwise, we
discard this case, and the algorithm proceeds.

Algorithm. The FISet search algorithm is shown in Algorithm 1. The al-
gorithm starts by taking a node from the dependence graph and by calculating
the number of in/out edges, which is then used to calculate rac. If rac > 1.0, it
adds it to the list of FISet. Next, it increases the set to explore by adding the
neighbors of the node, which are then used to calculate rac like in the previous
step. The nodes to be explored are added to the neighborsList. It does not add
neighbors to the list if the node is a terminating node, i.e., it is a load/store
operation or a function call since these operations do not have lower precision
versions. For GPU kernels with very large dependence graphs, the algorithm
can find many FISets. In those cases, we allow the user to specify the maximum
number of FISets that the algorithm return, using the parameter φ.

Multiple FISets. Algorithm 1 can identify multiple disjoint FISets in the
same kernel. If two FISets overlap, i.e., they have instructions in common, the
algorithm will return the union of the two. If FISets do not overlap, multiple
configurations combining these FISets are considered. In practice, however, we
found that a single FISet per kernel typically gives reasonable speedups.

Compilation Process. Once CUDA modules are transformed to NNVM IR
(by the clang front-end), the FISets search is performed in the NVVM IR repre-
sentation. After this, the kernel is transformed to PTX, which is then assembled
into object files. Finally the NVIDIA nvcc compiler is used to link objects.

4.5 Shadow Computations

FISets per se give no information about the error introduced by lower precision
arithmetic. To calculate this error we use dynamic shadow computations. Shadow
computations analysis for mixed-precision tuning has been used before [22,13];



10 Ignacio Laguna, Paul C. Wood , Ranvijay Singh, and Saurabh Bagchi

input : Dependence graph DG
output: FISets: list of FISets found

1 for node n ∈ DG do
2 if n is not arithmetic op then
3 continue
4 else
5 currentSet = [n]
6 neighborsList = [n]
7 while neighborsList is not empty do
8 tmp = neighborsList.getFirstElement()
9 for node m ∈ neighbors(tmp) do

10 if m is not load/store or function call then
11 numConversions += numInEdgesOfNode(m) +

numOutEdgesOfNode(m) - numFloatingPointConstants(m) - 1
12 numOperations += 1
13 add neighbors of m to neighborsList
14 remove m from neighborsList
15 add m to currentSet

16 if numOperations/numConversions > 1.0 then
17 add currentSet to FISets

Algorithm 1: FISet Search Algorithm. Symbols and operation definitions: neigh-

borsList is the list of nodes to visit; currentSet is the set of nodes we have visited

and may become a FISet ; neighbors() returns the in- and out-edges of a node that

have not been visited; numInEdgesOfNode() and numOutEdgesOfNode() return the

number of in- and out-edges of a node respectively; numFloatingPointConstants() re-

turns the number of constant input parameters of an operation (they do not require

conversion). Note that line 11 subtracts 1 because we need to subtract the edge that

connects m to the currentSet, otherwise it would be counted twice when we calculate

numInEdgesOfNode() or numOutEdgesOfNode().

however, none of the previous frameworks handle multi-threaded programs, so,
as far as we know, ours is the first.

The idea of shadow analysis is that, for each floating-point arithmetic oper-
ation in high precision, e.g., FP64, a similar operation is performed side-by-side
on lower precision, e.g., FP32. By comparing the result of the operation in low
precision with the result of the operation in high precision, we calculate the
relative error that the low-precision operation would introduce.

Calculating the Kernel Total Error We compute an approximation of the
total error that is introduced in the kernel when the precision of portion of the
kernel (a FISet) is downgraded. This allows us to guide the search for FISet
configurations that introduce low total error.

More formally, let us say that a kernel comprises FP64 operations {a64, b64, c64}.
Operations are of the form [x64 = OP, y64, z64], and OP ∈ {+,−, ∗, /,<,>,=
, 6=}. When an operation is transformed to FP32, its operands y64, z64 must be
truncated to FP32. Both the truncations and the operation performed to lower
precision introduce errors. Shadow computations analysis computes an approx-
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Kernel

a64

b64

a32

b32

ea

eb

Relative 
Errors Total Error

FISeterror

… …
FISet

…
Shadow 

Ops

(a) Total error calculation

FISet 1

FISet 2

FISet 3

Program 
configurations

Corresponding
FISeterror

0.00012

0.00448

0.00619

Run program 
configuration

&
Check if output satisfies 

user constraints

(b) Trial runs sorted by their FISeterror

Fig. 3: Shadow computations used to calculate the mixed-precision error

imation of the total error introduced by these transformations. The word total
means that the contribution to the error of all the GPU threads is considered.

Kernel Instrumentation We start with a kernel with all its instructions in
FP64. Each FP64 operation is instrumented with a callback function. The func-
tion takes as input the operands of the FP64 operation (in FP64 precision) and
truncates them to FP32 precision. It then computes two values: v64 and v32. v64
corresponds to the result of the operation as if the operation is performed in
FP64 precision; v32 corresponds to the result of the operation as if the operation
is performed in FP32 precision. The following calculates the relative error:

e = abs((v64 − v32)/v64), (2)

where abs() is the absolute value function. The result of e is stored in FP64
precision. Because of the SIMT execution model of GPUs, all threads in a warp
in the kernel block execute the same callback function.

GPU In-Memory Structure We keep a structure in the GPU global memory
of the form:

total error[INST][THREADS],

where INST is the number of static instructions of the kernel, and THREADS
is the maximum number of threads that the kernel can use. This keeps track of
the error values for all static instructions and for all the threads that execute the
instruction. Since a thread can execute a static instruction multiple times, each
calculated e is aggregated (added) into a single e for the static instruction—this
allows us to calculate a total relative error for the instruction (see Figure 3a).

Assigning an Error Value to a FISet. We run the GPU program once
with a set of inputs from the user to obtain a total error value for each static
instruction. Given a FISet with N instructions, we assign an error value to the
FISet by merging the total error value of each FISet static instruction, using
this formula:

∑N
i total errori. We call this error FISeterror.
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Trial Runs. Given several FISets, and their corresponding FISeterror, to satisfy
accuracy constraints, we search for FISets configurations in the order of their
error, starting with those with the smallest FISeterror (see Fig. 3b). Searching
for configurations means that we run the program to determine its output. We
call this a trial run. Trial runs are independent of the shadow computations run.

Putting it All Together Error and Performance Thresholds. To search
for configurations, the user provides two independent parameters: error threshold
and performance threshold. Error threshold specifies the number of digits of
accuracy that is expected in the program output with respect to the baseline
FP64 precision case. For example, if the output of the FP64 case is 3.1415 and
the output of the mixed-precision case is 3.1479, we say that the latter is accurate
up to 3 digits (i.e., from left to right, digits 3, 1 and 4).

Performance threshold specifies the minimum performance speedup that is
expected. Here, performance speedup is defined with respect to the maximum
ideal speedup, i.e., the performance of the program when it is compiled using
fully FP32. We use the figure of merit (FOM), which represents the metric of
performance of the program. Specifically, we define the speedup of the mixed-
precision case as:

s = ((pmixed − p64)/(p32 − p64)) ∗ 100, (3)

where pmixed is the performance of the mixed-precision case, p64 is the perfor-
mance of the FP64 case, and p32 is the performance of the FP32 case. Thus,
s = 100% when the mixed-precision case performs as the FP32 case, i.e., when
all instructions are converted from FP64 to FP32.

Modes of Operation. Our approach has three modes of operation to search
for configurations:

– Mode 1: the user cares only about the output error and does not care about
the magnitude of performance speedup (as long as there is some performance
speedup). In this case, the user provides only an error threshold. The search
is based on the FISets total error value—we start running the FISet configu-
ration with the smallest total error, then continue with the configuration with
the second smallest total error, and so on. The search ends when the output
error meets the error threshold.

– Mode 2: the user cares about both output error and performance speedup,
but output error has priority. Here, the search is performed like in Mode 1,
but it ends when both the output error meets the error threshold and the
performance speedup meets the performance threshold.

– Mode 3: the user cares about both output error and performance speedup,
but performance speedup has priority. Here, the search is based on the ratio rac
of the FISets (high rac implies high chances of performance improvements)—
we start by running the FISet configuration with the largest rac, then continue
with the configuration with the second largest rac, and so on. The search ends
when both the output error meets the error threshold and the performance
speedup meets the performance threshold.
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4.6 Limitations

Accuracy of Ratio rac. A limitation of rac is that it does not consider the
actual cost of operation types. Unfortunately, we are limited by the fact that
the NVIDIA CUDA C Programming Guide [20] does not specify the cost of all
GPU operations—it specifies the throughput of add and multiply operations
but it lacks throughput specs for other common operations, such as division

and math operations, e.g., sqrt. We believe that per-instruction costs could be
empirically estimated for specific GPU architectures, but it requires significant
benchmarking that is out of the scope of this paper. Nevertheless, we have found
that rac is practical for most cases.

Register Pressure. Mixed-precision programs can incur register pressure
because new type conversions introduce additional instructions, thus more reg-
isters may be required. Registers, along with other resources, are scarce in GPU
Streaming Multiprocessors (SM). There is a maximum number of available reg-
isters in an SM—255 per thread for NVIDIA compute capability 6.0. If a kernel
uses more registers than the hardware limit, the excess registers will spill over to
local memory impacting performance. FISets can increase registers usage by a
small amount. This may be a problem only on kernels with a register usage that
is close to the limit. In such cases, a configuration may not yield any speedup.
In our experiments, however, we only saw one kernel in this category.

5 Evaluation

We present our evaluation of GPUMixer. We implement GPUMixer in the Clang/L-
LVM compiler [14] 4.0, using the CUDA ToolKit 8.0. Experiments are conducted
in a cluster with IBM Power8 CPU Core nodes, 256 GB of memory, and NVIDIA
Tesla P100 GPUs (compute capability 6.0), running Linux.

5.1 Comparison Approach: Precimonious

While none of the existing mixed-precision tuning methods handle multi-threaded
and/or CUDA codes, the Precimonious technique [23,22] uses a generic search
algorithm, delta debugging, that can be implemented for CUDA programs (the
original version in the paper works on CPU-base serial programs). This algo-
rithm is considered the state-of-the-art on automatic mixed-precision tuning
and it is also used as a comparison baseline in several works [7,22]. We imple-
ment the delta debugging tuning algorithm as described in [23] as a comparison
framework for our approach as well, which we call Precimonious-GPU.

As described in [23], our implementation finds a 1-minimal configuration, i.e.,
a configuration for which lowering the precision of any one additional variable
would cause the program to compute an insufficiently accurate answer or violate
the performance threshold. To generate program variants, we use static changes
to the source code to modify the declarations of variables from FP64 to FP32.

Mode of Operation. Since Precimonious does not perform a search sepa-
rately driven by error or by performance, we only use one mode of operation:
once both the error and performance constraints are met, the algorithm stops.
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Table 3: Profile of Top Kernels in LULESH

Kernel Time rac
Registers Usage
FP64 Mixed

CalcVolumeForceForElems 25.21% 8.13 254 255

ApplyMaterialPropertiesAndUpdateVolume 24.62% 1.01 62 65

CalcKinematicsAndMonotonicQGradient 18.87% 3.45 128 128

5.2 CUDA Programs

We evaluate our approach on three scientific computing CUDA programs: LULESH [10],
CoMD [1], and CFD [2]. LULESH is a proxy application that solves a Sedov blast
problem. This simulation is useful in a variety of science and engineering prob-
lems that require modeling hydrodynamics. CoMD is a reference implementation
of typical classical molecular dynamics algorithms and workloads. CFD (from
Rodinia benchmarks) is an unstructured grid finite volume solver for the three-
dimensional Euler equations for compressible flow. We use -O2 optimization in
all programs. As inputs we use: -s 50 for LULESH, N=20, nx=25,ny=25,nz=25,
for CoMD, and fvcorr.domn.193K for CFD.

Output. For LULESH, we consider the TotalAbsDiff as the main output, a
symmetry value for the final origin energy of the simulation. For configuration,
we also perform other correctness checks, including making sure that the final
energy and iterations count is the same as in the FP64 version. For CoMD, we
use the simulation final energy as the main output since this is one of the key
interesting final results for molecular dynamics simulations. For CFD, we use
the total density energy as the output.

Figure of Merit (FOM). For LULESH, we use zones per second as the
FOM; for CoMD we use the average atom rate, i.e., processed atoms per time
(atoms/usec); for CFD we use execution time in seconds. Note that for LULESH
and CoMD, higher FOM is better, while for CFD, lower is better.

5.3 Overhead of Shadow Computations

The overhead of shadow computations analysis is on average 24× (61× for
LULESH, 1.5× for CoMD, and 11.12× for CFD), which is comparable to the
overhead of static and binary instrumentation tools [9,15]. Note that shadow
computations analysis is run only once with a given input and is independent of
the trial runs (see Section 4.5).

5.4 Threshold Settings

We present results for three levels of accuracy (3, 6, and 9 digits of accuracy)
with respect to the baseline FP64 precision case, and four performance thresh-
olds (5%, 10%, 15%, and 20%). We experimented with higher digits of accuracy
and higher performance thresholds, however, none of the approaches found so-
lutions in such cases, so we limit the results in the paper to 9 digits of accuracy
and 20% of performance threshold. Note that for CFD, where lower FOM is
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Table 4: Results of using FISets and shadow computations: performance speedup (%
of maximum ideal speedup) for three error thresholds, four performance thresholds and
tree modes of operation; number of runs in parenthesis.

Error Mode 1 Mode 2 Mode 3

Thold. Performance Threshold Performance Threshold

(digits) 5% 10% 15% 20% 5% 10% 15% 20%

LULESH

3 9.8% (1) 9.8% (1) 30.4% (2) 30.4% (2) 30.4% (2) 46.4% (1) 46.4% (1) 46.4% (1) 46.4% (1)

6 0.3% (12) 8.4% (79) − − − − − − −
9 0.3% (12) − − − − − − − −

CoMD

3 24.2% (1) 24.2% (1) 24.2% (1) 24.2% (1) 24.2% (1) 10.9% (1) 10.9% (1) 37.5% (7) 37.5% (7)

6 24.2% (1) 24.2% (1) 24.2% (1) 24.2% (1) 24.2% (1) 10.9% (1) 10.9% (1) 37.5% (7) 37.5% (7)

9 2.3% (3) 19.7% (62) 19.7% (62) 19.7% (62) − 19.3% (8) 19.3% (8) 19.3% (8) −

CFD

3 8.3% (1) 8.3% (1) 13.3% (3) 15.3% (35) − 5.1% (9) 12.6% (15) 15.1% (39) −
6 8.34% (1) 8.3% (1) 13.3% (3) 15.3% (35) − 5.1% (9) 12.6% (15) 15.1% (39) −
9 − − − − − − − − −

Table 5: Precimonious-GPU results: performance speedup (% of maximum ideal
speedup) for the error thresholds and performance thresholds; number of runs are
in parenthesis. See Fig. 4 for the maximum speedup reported for each approach.

Error Thold. Performance Threshold
(digits) 5% 10% 15% 20%

LULESH
3 11.6% (11) 11.4% (11) 17.4% (32) 20.7% (34)
6 11.5% (11) 11.4 (11) − −
9 − − − −

CoMD
3 12.6% (2) 12.9% (2) − −
6 13.6% (2) 12.7% (2) − −
9 5.4% (24) − − −

CFD
3 − − − −
6 − − − −
9 − − − −

better, speedup is −s. We set the maximum number of FISets, φ, to 100 in all
experiments. In practice, the number of trial runs is always less than this value.

5.5 Case 1: LULESH

Table 3 shows the result of LULESH’s profile. The first and second columns show
the three kernels that consume most of the execution time and the percentage
of time, respectively. Since time in the remaining kernels is small (less than 5%),
we do not consider them in the rest of the analysis as they are unlikely to yield
high speedups when using mixed-precision. The third column shows the average
arithmetic-to-cast operations ratio, rac, for the kernel FISets.

As we observe in the table, CalcVolumeForceForElems has a high aver-
age rac, which means that the FISets of this kernel could potentially give high
speedups. As we observe in the fourth and fifth columns of the table, which
show the register usage for the baseline (FP64) and mixed precision versions,
the register usage of this kernel is very close to the limit, i.e., 254 out of a maxi-
mum of 255 registers per thread in this GPU. The average register usage for the
mixed-precision version is 255, which indicates that this is kernel is not a good
candidate for mixed-precision, therefore, we discard this kernel in the analysis.
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Fig. 4: Maximum performance speedup (% of the ideal speedup) reported by
Precimonious-GPU and the FISets approach.

ApplyMaterialPropertiesAndUpdateVolume is the next kernel that we con-
sider (second in the table). While the algorithm found a few FISets in it (4), the
average rac of these FISets is quite low: only 1.01. This indicates that there is
almost no potential for performance improvements in this kernel, thus, we also
discard this kernel in the analysis.

CalcKinematicsAndMonotonicQGradient, the third kernel is next consid-
ered. This kernel has the appropriate characteristics: the average FISets rac is
3.45 and its average register usage is 125, even when FISets are used, i.e., for this
kernel FISets do not increase register usage. Therefore, we focus on this kernel
in the rest of the analysis and experiments.

Table 4 (first section) shows the performance results for LULESH, for the
error thresholds, performance thresholds and the three modes of operation; the
number of trial runs are shown in parenthesis. For Mode 1, we find a configuration
with 3 digits of accuracy and 9.8% of speedup with a single trial run; the cases for
6 and 9 accuracy digits do not produce significant performance improvements.

Except for the 6-digit case in Mode 2 (5% of performance threshold), which
requires 79 runs, Mode 1 and Mode 2 both generally find configurations with
high performance improvement (up to 46%) with only a few runs (1–2 runs).
We did not find configurations for the 9-digit case in Modes 2–3.

Precimonious. The Precimonious-GPU results are shown in Table 5. We
observe that the maximum speedup found is about 20.7% for the 3-digit case.
Like in our approach, it cannot find good solutions for the 9-digit case.

Input Sensitivity. We measure the performance speedup (using Eq. 3) for
multiple LULESH inputs. We use two FISet configurations: one with a low rac
of 2.08 (case 1), and another one with a high rac of 6.90 (case 2). Fig. 5 shows
the results; digits of accuracy are shown as labels. We observe that for case 1,
the speedup for a small input (20) is small, but it increases for larger inputs. For
case 2, the speedup for a small input is large and it decreases for larger input.
In both cases the speedup stays almost the same for several large inputs, 50–80.
The digits of accuracy for case 1 tend to be higher than for case 2 because case
1 has less FP32 operations than case 2 (its FISet is smaller) and as a result it
incurs smaller error.
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Fig. 5: Performance speedup for multiple LULESH inputs for two FISet configurations.
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5.6 Case 2: CoMD

CoMD is a compute-intensive workload, where a large portion of time is spent
computing forces between particles—these operations involve several addition
and multiplication operations versus a few load/store operations. This code is a
good candidate for FISets and mixed-precision in general.

We follow a profiling phase that is similar to the one we did for LULESH. Out
of the top four time-consuming kernels, SortAtomsByGlobalId, LoadAtomsBufferPacked,
fill, and LJ Force thread atom, our algorithm only found FISets in LJ -

Force thread atom. Thus, this was the only candidate for performance improve-
ments for our technique. The average FISets rac for this kernel was 3.10. By in-
specting the code more carefully, we found that LJ Force thread atom is where
particle force calculations is done, so this finding makes sense. We did not find
any kernel with high register pressure in this code.

Table 4 (mid section) shows the performance results for CoMD. As expected,
the algorithm finds configurations that meet both error and performance thresh-
olds for all modes of operation, in many cases with a single trial run. The best
case in terms of performance was about 37% for 6 digits of accuracy with only
7 runs. As shown in Table 5, while it can find solutions with a few trial runs,
Precimonious-GPU finds a maximum speedup of about 12.9%.

5.7 Case 3: CFD

CFD presents high potential for performance improvements via mixed-precision
since the code core computations, flux computations, involve a number of compute-
intensive operations. While this program is smaller than the LULESH and
CoMD, it challenges our approach because its main kernel is relatively large,
potentially causing FISets to put pressure on register usage.

After profiling the code, we find that 67% of the time is spent in cuda -

compute flux, while the rest of time is spent mostly on cuda time step (22%).
Our algorithm did not find FISets in cuda time step; so we focus on cuda -
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compute flux on which the average rac of FISets is 3.56. Note that we did not
find any kernel on which FISets causes a register pressure in this code.

Table 4 (third section) shows the performance results for CFD. We find
configurations of up to 15.1% with up to 6 digits of accuracy running the code
39 times. It can also find a case for 8% of speedup on 6 digits of accuracy with a
single trial run. Precimonious-GPU is, however, unable to find solutions for the
target error and performance thresholds—the maximum performance speedup
ever reported during the search was about 1.4% as shown in Figure 4.

6 Conclusions

While floating-point mixed-precision tuning techniques exist, they are accuracy-
driven and do not provide significant performance speedups to GPU programs.
We introduce and evaluate GPUMixer, a new tool to tune floating-point preci-
sion on GPU programs with a focus on performance improvements. GPUMixer is
engineered on novel concepts, such as FISets to statically identify regions that
yield performance, and shadow computations analysis to compute the error in-
troduced by mixed-precision. Our evaluation shows that our approach can be
used in realistic GPU applications, and that it can find configurations that pro-
duce higher speedups (up to 46% of the ideal speedup) than those of current
state-of-the-art techniques.
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