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ABSTRACT
Mixed precision computations improve high performance comput-

ing throughput for applications that can tolerate decreased math-

ematical precision in their computations. Native mixed precision

computation is commonplace in today’s GPGPU accelerators where

it is applied to applications with well-known tolerances for reduced

mathematical precision. Applications with stricter accuracy needs

lack support for selecting precisions that both improve performance

and satisfy these accuracy requirements. Prior works have focused

primarily on accuracy, leaving performance concerns such as the

overhead of casting unanswered in GPGPU contexts. In this paper,

we present a system called AMPT-GA that selects application-level

data precisions to maximize performance while satisfying accuracy

constraints. We combine static analysis for casting-aware perfor-

mance modeling with dynamic analysis for modeling and enforcing

precision constraints. We further improve our optimizations with

application-aware mutations in our genetic algorithm-based search

function. AMPT-GA improves the performance efficiency of our tar-

get applications more than the prior state-of-the-art approach called

Precimonious. AMPT-GA outperforms Precimonious in efficiency

by 14-63%.

ACM Reference Format:
PradeepVKotipalli, Ranvijay Singh, PaulWood, Ignacio Laguna, and Saurabh

Bagchi. 2019. AMPT-GA: Automatic Mixed Precision Floating Point Tuning

for GPU Applications . In ICS ’19: 33rd ACM International Conference on
Supercomputing, June 26–28, 2019, Phoenix, AZ. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
High-performance computing (HPC) scientific applications rely

heavily on floating point arithmetic to compute the high-precision

outputs needed by end users. Often in these programs, it is possible

to reduce the floating-point precision of certain variables in order
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to speedup execution or to reduce computation energy. In recent

NVIDIA GPUs, for example, the throughput of single-precision

floating-point operations is twice that of double-precision opera-

tions. Being able to leverage this trade-off becomes increasingly

important as we seek to execute applications at large scales driven

by increases in problem size. One crucial dimension in this problem

space is the accuracy of application results, which must satisfy

user-driven accuracy or error thresholds.

Combining different precisions for different floating point vari-

ables is known as mixed precision computing. Mixed precision com-

puting has been known for years [15], but several recent changes

in the GPU space have created new opportunities for improving

efficiency. GPU manufacturers have begun to include native FP64

(double precision) and FP16 (half precision) arithmetic units inside

of their processing units, in addition to FP32 (single precision). As a

result, FP64/FP32/FP16 instructions can coexist providing different

performance levels, e.g., the ratio of FP64:FP32:FP16 throughput is

1:2:4 in the P100 series of Tesla GPUs. Prior to the introduction of

these processors, mixing FP64 and FP32 instructions had limited

performance impact because mixed precision math units were rare.

Selecting mixed precisions results in data types conversions, or

casting. As examples of the acceptability of results of lower precision

arithmetic, consider LULESH [12], an important proxy application

for the exascale co-design efforts of the US Department of Energy

(DOE). While computing everything on FP32 precision significantly

perturbs the desired symmetry of the solution, computing every-

thing on FP64 may be unnecessary— making some variables FP32

precision, while the rest stay at FP64 precision has been shown to

yield acceptable output [1]. In the area of LSTM (a form of neu-

ral network) used for speech recognition and machine translation,

Baidu researchers have recently found significant gains using a mix

of FP32 and FP16 variables on a GPU with no difference in accu-

racy [19]. However, no prior work has shown how to navigate this

space in a rigorous algorithmic manner balancing the improvement

in execution speed with a hard bound on the tolerable error.

Prior Work: Prior work on mixed precision optimization falls

short in three crucial ways. First, prior works do not support paral-

lel codes found in GPU programming models as they rely on serial

instrumentation or profiling support that does not span the GPU

programming and execution model, such as CPU-to-GPU calls. Sec-

ond, accuracy-centric approaches [5, 15] lack a performance model

and simply assume that minimal precision results in the fastest run-

ning time. For example in [5], the objective function is to maximize
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the number of FP32 variables. In practice, mixing precision requires

casting to satisfy the mathematical operation with the most precise

operand. However, casting is an expensive operation (e.g., twice as

expensive as FP64 operations in our target GPU architectures) and

therefore reducing precisions may actually increase the execution
time. Further, when there are parallel resource pools for FP64 and

FP32 (as in several GPU architectures), mixing precision allows for

an additional opportunity for parallelism, which prior work ignores.

In some previous work [5, 8], precision levels are selected that meet

overall accuracy requirements, but they often fail to improve the

execution time of the application. Third, approaches that solely

use online runtime information [21] suffer from very large search

space problems. Consider that there are n floating point variables

that can be tuned and there are 3 precision levels supported by the

architecture—the search space here is 3
n
. In large production-level

scientific applications, n can be very large (thousands), making this

method impractical.

Our Solution: We present AMPT-GA (pronounced “Amp-ed
GA”) the first mixed precision optimization system that solves an

accuracy-constrained performance maximization problem for GPU

programs. AMPT-GA seeks to select the set of precision levels for

floating point variables at an application level that maximizes the

performance while keeping the introduced error below a tolerable

threshold, as defined by the application user. The complete set of

assignments of each floating point variable to a precision level is

called the Precision Vector (PV) and the optimal PV is the final output

of AMPT-GA. The key insight behind AMPT-GA is that the dynamic
search technique through the large space of possible precision vectors
is aided by static analysis. Our static analysis identifies groups

of variables whose precisions should preferentially be changed

together to reduce the performance impact of the precision change

of any variable through casting. Such information speeds up the

online search through the large search space. Further, considering

the irregular nature of the search space, we use a Genetic Algorithm

for the search, which helps avoid local minima that prior approaches

such as [11, 21] have a tendency to fall into.

To make our rationale concrete, consider the operation x + y
which translates to either FP32 addition of two FP32 variables or

FP64 addition of two FP64 variables as an architecture requirement.

At a compiler level, if the precision of x and y do not match, then

the operation FP32 x + FP64 y yields a FP64 add with x being

converted from FP32 to FP64 following the C/C++ standard, our

target language. Such conversion takes time of 4 units in our target

GPU architecture, while FP32 add takes time of 1 unit and FP64 add

2 units. Consequently, many mixed precision configurations run

slower than the all-double case—in our experiments, 41.8% of the

configurations sampled were slower than all-double. Our solution

takes this cost explicitly into account while searching, aided by its

static analysis phase. Thus it avoids many PV configurations that

would perform poorly due to the cost of casting.

A second novelty is that AMPT-GA takes a global view of the

error and avoids the complex issue of mapping of per-operation

error to final application-level error. We use global error models

in our analysis, a departure from the Blame Analysis work [20],

where pruning is done based on local, per-operation error models

that are difficult to come up with and that do not easily map to

global application errors for complex programs. As a result, the

selected PV from AMPT-GA results in a performance improvement

that takes into account both the cost of casting and the speedup

of operations due to reduced precision arithmetic. This comes at

a cost of reduced accuracy, but one that is tolerable according to

user specification.

We find that AMPT-GA is able to outperform the state-of-the-art

approach Precimonious [21] by finding 77.1% additional speedup

in LULESH’s mixed precision computations over its baseline of

all double variables, while using a similar number of program ex-

ecutions as Precimonious. Our casting-aware static performance

model allows AMPT-GA to find precision combinations that Preci-

monious was unable to identify due to local minima issues. With

three representative Rodinia benchmarks, LavaMD, Backprop, and

CFD, we achieve additional speedups relative to Precimonious of

11.8%–32.9% when the tolerable error threshold is loose, and -5.9%–

39.8% when the error threshold is the tightest. We choose these

three as they span the range of number and sizes of kernels as

well as the spectrum of precisions available on latest generation

GPU machines. We also evaluate the efficiency of the three solution

approaches, which is the performance gain over the number of

executions needed to search for the optimal PV, and AMPT-GA

outperforms in this metric.

Our claims to novelty in this paper are as follows:

(1) We improve the efficiency of finding viable mixed precision

programs by integrating GPU-compatible static analysis into

a genetic searching process. A statically built performance

model provides an execution filter that eliminates unprof-

itable precision vectors, reducing the number of executions

that AMPT-GA has to perform during its search.

(2) AMPT-GA provides application-level guidance on precision

level for entire GPU applications rather than localized ker-

nels, functions, or instructions seen in prior works.

(3) Experimentally we find that our search strategy can avoid

local minima compared to the state-of-the-art approaches,

thus leading to execution time gains.

2 RELATEDWORK
Priorwork onmixed precision performance optimization can broadly

be divided into two categories, works that tune the precision to

control the error and those that also take the performance of the

tuned system into consideration.

2.1 Error Analysis
Prior work in static error analysis provides a foundation for rigor-

ously determining what precisions are required to meet error con-

straints for particular closed form equations. Work in FPTuner [5]

provides expression-level precision guarantees by using Taylor se-

ries expansions and formulates an error-constrained mixed integer

optimization problem that attempts to find the lowest precision

possible, subject to casting penalties, for a given error bound. The

mathematical model obtains a rigorous error bound but is unable

to deal with loop and conditional statements, making it unsuitable

for LULESH and most other real programs. Our work provides

precision guidance for application-level parameters rather than at

the individual expression level. Related to FPTuner, work in [8]
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Figure 1: Overview of AMPT-GA. The inputs to AMPT-GA, shaded in green, are the application, the GPGPU properties (such as
FP32 vs. FP64 instruction performance, casting cost), the error metric of interest and the corresponding error threshold, a test
input, and the fuzzing process to generate similar inputs. The static path (in yellow) creates a performance and dependency
model and the dynamic path (in blue) finds the Precision Vector (PV) to minimize the execution time of the application while
staying under the error threshold. The blue optimization boxes are part of an iterative optimization process that run multiple
generations of a Genetic Algorithm to identify the output PV. The purple boxes are measurements executed on the target
GPGPU platform. During the search, each PV is evaluated through actual execution on the GPGPU unless filtered by our
execution filter. The final PV for the test input is then measured against a region of similar inputs to determine its generality.

utilizes an SMT solver to determine precisions from program anno-

tations to meet tight error bounds, but the runtime of the resulting

application is not considered. There are also models such as [16]

and [14] that perform Shadow Value Analysis by inserting low level

instructions at runtime to simulate floating point instructions at

another precision. However, this is only a tool for analysis with

respect to error, not for finding faster configurations. A few tools

exist that rewrite code segments, basic blocks, or instructions so

that they perform faster for floating point operations [18, 23], but

these improvements are complementary to AMPT-GA. The prior

line of work on error characterization of applications [2, 3] is or-

thogonal to our work and AMPT-GA can benefit by using these to

determine when the error is unacceptable, to complement the user

specification.

2.2 Application-Level Precision Tuning
Our solution focuses on application-level precision tuning where

all variables in a program (or in a chosen set of GPU kernels) are

under consideration for precision updates. Precimonious [21] is the

most closely related work that provides precision tuning guidance.

It aims to find the 1-minimal configuration, i.e., a configuration

where changing even a single variable from higher to lower pre-

cision would cause the configuration to cease to be valid. A valid

configuration is defined as one in which the relative error in pro-

gram output is within a given threshold and there is a performance

improvement compared to the baseline version of the program.

Precimonious uses the delta debugging algorithm [24] to speed up

the search process. However, it does not use any knowledge of the

structure of the program to identify potential variables of inter-

est. Furthermore, the impact of casting plays a significant role in

precision selection, and we incorporate such analysis directly in

our optimization approach unlike Precimonious. Other approaches

have used stochastic searching, similar to the genetic algorithm

used in our work, such as [22], but they focused on loop-free code

segments while AMPT-GA works across loops and functions.

Work in [15] uses a search technique which however does not

guarantee a reduction in execution time.

A recent solution called HiFPTuner [11] alleviates this problem

to some extent by taking a white box approach. It performs static

analysis of the program to generate read-after-write dependencies

among variables and uses these dependencies to limit the search

space of Precimonious. It has the insight that we share, i.e., avoiding

frequent shifts in precision at runtime contributes to better overall

performance.

Blame Analysis [20] on the other hand performs dynamic analy-
sis to achieve floating point precision tuning, considering the appli-

cation to be white box. It creates a blame set for each instruction,

which comprises the variables whose precisions can be reduced

to reach a given error threshold of the instruction under consid-

eration. Building the blame sets and the repeated executions with

different possible precision values makes this technique expensive

and it demonstrates overheads of about 50X, which is typical of

dynamic instrumentation programs. However, it does reduce the

search space for Precimonious and can be used as a pre-processing

step for Precimonious as also for us. When coupled with our solu-

tion, we can provide the guarantee that the transformed program

will execute faster, as Blame Analysis will narrow down the GA

search we will have to do. We do not perform this experimental

comparison because the code base of Blame Analysis does not run

on GPUs and our attempts to port it were unsuccessful.

3 OVERVIEW OF AMPT-GA
AMPT-GA is a multi-step process that solves the mixed precision

optimization problem. The target application has N tunable floating

point variables, and our goal is to calculate a precision vector (PV)

of size N where each entry can be any of the supported precision

levels, such as (for our target GPU) FP64 (double), FP32 (float),

162



AMPT-GA: Automatic Mixed Precision Floating Point Tuning for GPU Applications ICS ’19, June 26–28, 2019, Phoenix, AZ

or FP16 (half). AMPT-GA’s end goal is to pick PV such that the

performance is maximized and the error is less than a user-defined

threshold T . In this context, we define performance as operations

per second.

AMPT-GA operates with an input of the target application or

individual kernel with a test harness, a list of variables that can be

changed, and a specific error metric with its target error threshold

(T ) for a given test input. If the list of variables is not specified, then

we perform the analysis using all the floating point variables in

the application or a target GPU kernel. For this paper, we assume

the architecture processes only identical-precision inputs for an

instruction, e.g., add with inputs FP64, FP64 or FP32, FP32 but not

FP32, FP64. This assumption holds in CUDA language definitions.

The compiler uses casting to enforce this constraint and we model

its performance implications.

We construct a performance model to predict the impact of

lowering the precisions of the considered floating point variables.

The model is constructed using static analysis through an LLVM
pass that constructs a dependency graph between the variables in

the program. The graph has instructions and variable definitions as

nodes, and edges connect variable definitions with their uses in an

instruction. This graph, when provided with the precision level for

each variable, measures the number of operations of each precision

and the number of castings that occur. This information is translated

into a performance score that captures the relative performance due

to faster lower precision instructions across candidate PVs. This

static pass does not capture the dynamic execution parameters such

as the number of times a loop will be executed. While there is no

guarantee that running time of equally-scored functions will be

the same, the score provides a relative ordering of the potential for

speedup of different PVs.

We use a modified genetic algorithm (GA) [6, 9, 10] to search

through the space of PVs to determine the one that maximizes per-

formance, while keeping the error below the specified threshold.We

use a GA-based solution because the PV space is binary constrained,

the gradients between the PVs are not smooth, and the objectives,

both error and performance, are non-linear. The GA at each step

of its search queries the performance model and only executes a

point in the search space if the estimated performance is better

than the best obtained so far. To search any given point, the GA

actually executes the program with the PV being considered and

then measures the performance and the error. If the performance is

lower than the best performance obtained so far (which will happen

due to inaccuracy in our performance model) or the error is higher

than the threshold, then this search point is rejected. Otherwise,

it stays in contention to be picked again for a future generation

of the GA. Our solution is aware of the casting-induced penalties

associated with dependent parameters (groups of related variables),

and the mutation function is modified to change some variables

in the hyper-dimensional group space, i.e., changing some set of

variables together to avoid casting penalties. The final result from

the GA is the optimal PV that the real application can be executed

with. Fig. 1 shows how these different steps are interconnected.

To repeat a significant point from above, the GA needs to ex-

ecute an application with the currently considered PV and since

execution of a program is expensive (relative to querying our per-

formance model), we choose to execute only if the performance

Figure 2: Example DAG for AMPT-GA.

model predicts that this will be a potentially worthwhile configu-

ration. To account for the inaccuracy in the performance model,

a certain relative range, say X% can be used, such that if the pre-

dicted performance is within X% of the best achieved so far, then

this search point will be exercised. We validate empirically that

filtering out likely unprofitable PVs and not executing the program

with them is highly beneficial (Figure 9). In testing, we implement

the PV as type definitions in the original source code for each vari-

able of interest as a source-to-source transformation. For example,

the variable “double t” in C++ is replaced with “typeOft t”, and

a header file is defined with “typedef typeOft PV(t)” where PV(t)

maps to either “double”, “float”, or “half”. Thus AMPT-GA can uti-

lize proprietary compilers, such as NVIDIA’s nvcc, to compile and

test final versions of the mixed precision application. AMPT-GA

also allows improvements available in nvcc to persist through our

precision modifications, an advantage over more tightly integrated

approaches that require intermediate representation manipulations,

such as those found in [21].

End user workflow. The end user deploys AMPT-GA by provid-

ing the application source to AMPT-GA, defining a test input, and

defining how the error will be measured and its target threshold.

From this, AMPT-GA will find the precision vector for all the float-

ing point variables that maximizes performance while meeting the

threshold. Optionally the end user can indicate which floating point

variables should be modified, e.g., she has the intuition that these

are heavily used and therefore likely to be performance critical.

4 OPERATION OF AMPT-GA
In this section, we describe the design details of AMPT-GA.

4.1 Optimization Objective
AMPT-GA is fundamentally an optimization process designed to

select the best precision vector (PV) such that the performance is

maximized while the error stays below the user-specified threshold.

We implement the constraint as an objective function penalty so
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that invalid solutions are rejected while information about the

magnitude of the error is still incorporated into the score to aid in

guiding the search.

min

PV
perf(PV ) + (error(PV ) −T ) · K (1)

where perf(PV) is the performance score, with smaller values indi-

cating higher performance. The performance model is described

in Section 4.3. The term error(PV ) is the value of the error met-

ric due to the chosen PV while the threshold for this error metric

is T . K is a multiplicative factor which is defined as follows: 1, if

error(PV ) ≤ T and P , a large value greater than the maximum perf

value, if error(PV ) > T .

User-Defined Error Metric. By default we use an application-

generic error metric, which is the number of digits of precision

compared to the most precise result. For example, if the output of an

application is y = 3.14159, the developer may specify that the error

of any output must match for the first 2 digits after the decimal

point, e.g., y=3.142 and y=3.140 are both acceptable outputs. We

use this metric in a global sense, for the entire application’s out-

put or outputs. In some applications, the developer may define an

application-specific error metric and the corresponding threshold.

For our test application LULESH, we utilize such an application-

specific metric that captures the expected symmetry of particles at

the end of the hydrodynamics simulation (Section 5.2).

Variables of Interest. Users may include all floating point vari-

ables in an application including arrays, structures, and individual

variables, but parameter growth will increase the searching time.

In AMPT-GA, we select the variables that are utilized in those GPU

kernels that have high running times as measured b y standard pro-

filing tools. We use a criteria that we start with the longest running

kernel, include that, and move down the list sorted according to

running time. When we have included enough kernels to capture a

given percentage of the total program running time we stop—in our

experiments, we include kernels which together account for at least

75% of the program’s running time. For the chosen kernels, we use

floating point variables that are inputs to the kernel, outputs from

the kernel, or are local variables in these kernels. In prior work [20],

Blame Analysis is used to identify variables that cannot be reduced

in precision because they violate local precision requirements. This

approach can also be used as a pre-processing step for us to limit

the number of variables that need to be included in the search.

4.2 “Black Box” Search
As a baseline for our optimization approach, we utilize a “black box”

optimization process which uses a genetic algorithm (GA) without

any program analysis to direct the search. The approach by prior

techniques, Precimonious [21] and its precursors [15, 16], can be

considered to be black box as well. The GA randomly samples an

initial population of PVs and then builds subsequent PVs by evolv-

ing them based on the performance of the prior generations. The

intuition is that the algorithm will continually build a population

that contains some entries close to the error threshold where the op-

portunity for lower precision is maximized. Each objective function

evaluation is executed on the test application, by compiling and

running it for the given PV. This approach can find solutions but

suffers from general problems that all genetic algorithms have, such

as large numbers of objective function evaluations. We compare

the results of the naïve GA to the full AMPT-GA.

GA along with any heuristic search has no guarantee of finding

the global minimum. However, our technique of grouping effec-

tively compresses the search space, which allows a larger percent-

age of the space to be explored with the same number of function

evaluations. This increases the chance of finding the global min-

imum under a fixed search time constraint, but the problem still

exists since our compressed search space is not guaranteed to be

smooth (there may be lots of local minima). We use the standard

techniques of GA to reduce the chances of getting stuck in a lo-

cal optimum, such as, having a large enough mutation rate and

allowing low fitness samples to survive from one generation to the

next.

4.3 Dependency Graph and Static Performance
Model

The static performance model and intermediate dependency graph

estimate the performance gain from a particular PV. In general, the

process takes an input of a PV and application source code, and it

estimates the number of floating point and double operations along

with the number of casts that appear statically in the code. The

dependency graph is based on the program structure for the all-

double case and applied to the mixed precision cases for calculating

the number of casts and operation types that would change in a

compiled mixed precision version of the program. We apply relative

performance metrics for the target hardware to these operations

and cast counts to generate a performance score for the particular

PV. For example, our target GPU computes 1 double (FP64) or 2

floating point (FP32) operations per normalized cycle and takes

4 cycles to perform a casting operation. The specific PV is then

translated into number of casts, number of FP32, and number of

FP64 operations which are mapped to the normalized cycles and

summed as a score. Since this analysis is static, loop counts are not

captured, but loops are rare in of GPU codes since the code itself is

executed in parallel.

We obtain the LLVM intermediate representation (IR) for each

kernel and then use the def-use and use-def chains to build a DAG

corresponding to all the floating point variables of interest in a

kernel, as shown in Fig. 2. The DAG has nodes which correspond

to different LLVM IR level instructions, with parents being the defi-

nitions of the variables being used in that instruction and children

being the uses of the result of the instruction at a virtual register

access level. Each node also contains information about the original

data type of the instruction and the basic block of the program to

which the instruction belongs. To simulate the changes in perfor-

mance due to a different configuration, the root level nodes, corre-

sponding to parameter and local variable definitions, are changed

to the new types as per the configuration. The children of these

nodes are then changed from higher to lower precision if all of
its parent nodes are of lower precision. If even a single parent is

in a higher precision, nodes corresponding to casting the lower

precision parent to higher precision are introduced. In this manner,

the change in type configuration is propagated down the DAG and
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a new version of the DAG for each PV, with different data types

corresponding to the nodes, is obtained.

We then go through each basic block and add the expected num-

ber of cycles for each floating point instruction from the architecture

specification (such as [7]) to calculate perf(PV ) for that configura-
tion. It should be noted that this score only considers floating point

instructions and so, the score will not be strictly be proportional

to the expected running time of the kernel. But it serves to rank

different configurations, with a configuration with a lower score

expected to perform better.

By analyzing the def-use chains in the DAG, we get guidance

for which combinations of variables should be changed together,

called groups in AMPT-GA. If a particular variable is a target for

change, then it is possible to list the successors and predecessors

that must also be changed to avoid inserting a cast, i.e., the set of

changes required to maintain a uniform math operation precision

if that particular variable’s precision is changed. For example, if

the series of instructions exists: a = x + y, b = a + z, then the

precision of x ,y, z should match to avoid casting the x +y and a+z
operation, since the representation for a will follow from x ,y. The
DAGwill have variables x ,y, z in the same chain, so selecting z for a
precision change will introduce casting unless the other operand (a),
and its predecessors (x ,y) are all the same type. Therefore, during

optimization, the variables (x ,y, z) are considered as a group. The

chain has a finite length provided the kernel terminates and has a

finite number of variables (true for any production program). In

our experiments, the longest DAG has 978 nodes, and we did not

have to impose any bound on the size of the DAG.

4.4 Precision Vector Optimization
Our optimization approach in AMPT-GA selects the optimal PV for

the given error threshold. Its goal is to optimize the function shown

in Eq. 1. This problem is particularly challenging for several reasons.

First, the space is very large even for fairly simple applications. In

one of our test applications, LULESH, there are 76 floating point

variables in the 3 longest GPU kernels. This makes the search space

size 3
76

when choosing between FP64, FP32, and FP16. Second, the

space is not smooth, and nearby points have many local minima.

For example, consider the PV for a simple operation a = x + y. In
this case, the PV is {1,1} corresponding to the precision of {a,b} as

both FP64 (FP64=1, FP32=0). If we consider {1,0}, then we have intro-

duced a cast without any performance benefit, i.e., the performance

differential is -4. If we consider {0,1}, then the differential is also -4.

This means that a 1-variable change makes the performance worse,

and a gradient-based optimization may converge to a local mini-

mum without discovering {0,0} which provides a +1 performance

benefit. The delta debugging approach of Precimonious runs into

such local minima because it makes its decisions to further explore

or not based on a single step exploration. We find empirical proof

for this phenomenon as explained in Section 5. For these reasons,

we rely on a genetic algorithm to optimize the PV.

The genetic algorithm by default does not learn any relationships

among the variables in the PV. In fact, while some stochastic ele-

ments help it escape local minima, it is only by chance that the {0,0}

PV would be considered from the earlier example. This is especially

true with score-weighted crossover and mutation functions that

bias the genetic population toward the current optimal values. The

probability that a group of size N will be selected at random for

casting to the same type is
1

PN , where P is the number of precision

levels (= 3 in our target GPU architecture). This means that for a

group of size 5 say, there is only a 0.41% chance that stochastic

exploration will cause all 5 variables to be all float and the same low

probability for all double. This probability becomes much lower

when other independent parameters in the PV are also explored

simultaneously. Thus, relying on a “blind search” (including a blind

GA search) will not be able to find desirable configurations.

We overcome this problem in AMPT-GA by introducing a hyper-

dimensional space with groups of variables for stochastic explo-

ration. The mutation function, with a certain bias, will perform the

mutation by changing an entire group of variables to a single preci-

sion level. We take the original random mutation PV that exists in

space {v1,v2, ...,vn } and map this to {д1,д2, ...,дm } where n ≥ m
(and typically n ≫m), д are the groups, and v are the variables. So

the union of the groups covers all the variables and some groups

can have a single element. If the mutation in the v space changes

any group д, then all of the variables in that group д are changed as

a unit for these G% of the mutations (G = 25% in our experiments).

LULESH, for example, has 48 such groups. The remaining 100-G%

of the population is mutated using the default Adaptive Feasible mu-

tation function that chooses a direction and step length that meets

feasibility requirements for the current PV, adapted from the last

successful generations of PVs. We also seed the initial population

with the two cases consisting of all variables being double and all

variables being float (or half, if half precision is supported in the

architecture) to define the upper and lower bounds of the search

space. This guarantees that AMPT-GA will find the solution in the

degenerate cases of the accuracy threshold being zero or∞.

4.5 Execution Filtering
AMPT-GA relies on actual program executions to measure the error

metric and verify if it is below the threshold. This means that every
objective function evaluation for a yet unseen PV requires executing
the application. Since this consumes execution time, AMPT-GAmin-

imizes the number of such evaluations using an execution filtering

module. This module evaluates the PV against the performance

score and compares the best seen performance score to that of the

test PV. If the score for the test PV is better, then the execution is

performed, else, the PV is not executed nor considered for further

search. This forces the GA to find performance-improving PVs first

before evaluating their accuracy.

4.6 Program Transformation
In AMPT-GA, we ultimately must apply the PV to the application

so that the actual operations in the program occur at the modified

precision. Instead of modifying the compiler, we utilize source code-

level program transformations to replace the variable definitions

and then allow recompilation with any supported compiler. This

allows AMPT-GA to benefit from continuing improvements in the

vendor-specified compiler.

AMPT-GA achieves this by modifying the declaration lines in

the program and giving each variable of interest its own type name.

For instance, “Real_t x” is replaced by “Real_t_x x”. Then we
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can arbitrarily control the data type of each variable by choosing

the appropriate one of “typedef double/float/half Real_t_x”.
By static analysis, we catch the dependent variables which should

be declared as the same data type and use typedef to control this

condition as well. In some cases, a given PV may not compile

because of pointer-based variable accesses where data types have

to be of a certain type. For example, if an array x has type double
and a variable y is being used to access its elements in a loop, such

as y = x[i] in a loop, then the data type of y and x must be the

same. Infinite penalty is set for such infeasible PVs.

4.7 Input Generalization
One challenge that all mixed precision programs face is generalizing

PVs across a variety of inputs. The relationship between input

values and error is complex enough that the optimal PV is highly

input-dependent. Instead of developing a guarantee, in AMPT-GA

we develop a confidence that inputs similar enough to the test input

will also satisfy the error constraint. We define the local input space

as: x ′ = x +N(µ = 0,σ = V ) (2)

where N(µ = 0,σ = V ) is the zero mean normal distribution with

varianceV . The varianceV captures how far from the user-provided

input we want to generalize. During the training phase of AMPT-

GA, we generate a set of points x ′. We measure for the optimal PV

found for the given input x , what fraction of the points obeys the

error threshold, which gives a confidence metric C . The higher the
value of C , the higher is the reliance that the user can have on the

generalizability of the output of AMPT-GA. Using this approach,

we can amortize the time it takes to find a PV across runs that have

similar but not identical inputs to the original x .

5 EXPERIMENTAL RESULTS
In this section, we evaluate AMPT-GA on a complex hydrodynamics

code from the US Department of Energy (DOE) called LULESH [12]

followed by evaluation on 3 diverse benchmarks from the Rodinia

suite [4], LavaMD, Backprop, and CFD.

5.1 LULESH
Lulesh is used as a proxy app by the US DOE for benchmarking

large-scale clusters because it is representative of many large codes.

It models hydrodynamics equations, which describe the motion

of materials relative to each other when subject to forces. We use

the CUDA version of LULESH, with input size -s 50. We run all

experiments on an NVIDIA Tesla P100 GPU machine.

5.2 Target Application and Limitations
We conduct our experiments by changing the precision at a variable

level for LULESH in the FP32 or FP64 space, controlled by the PV.

For performance, we measure “Figure of Merit” (FOM) as the rate

at which elements in the simulation are processed, synonymous

to throughput. FOM is the standard metric used for reporting per-

formance on LULESH [13] and is output by default at the end of

the code. There are esoteric reasons for relying on FOM instead of

simple execution time that are related to scaling, but the improve-

ments in wallclock and FOM are directly proportional. The actual

metric we evaluate is the FOM as a percentage of the FOM with the

lowest possible precision level (all floats for most of the applications,

and all half precision for Backprop). Compared to evaluations in

prior works, LULESH is a relatively complex code spanning 7,000

lines of C++ code on the GPU side and 600 LOC on the CPU side.

We consider a total of 76 floating point variables in our tests. For

comparison, in Precimonious [21], the largest program for which

any mixed precision solution was found had 32 variables.

For the error constraint in LULESH,we rely on the the application-

specific metric TotalAbsDiff, which measures the difference be-

tween energy values at symmetric points in the different dimen-

sions. The error thresholds were selected by sampling 20,000 uni-

formly random PVs and collecting the 25%, 50%, and 75% quartiles

from the data as 0.65 (tightest), 2.5, 3.6 (loosest) respectively. We de-

bated about acceptable error threshold targets for our experiments

and concluded that there was no universally accepted objective

way to define such thresholds. Even if we surveyed subject matter

experts to establish particular error thresholds for specific appli-

cations, this would not be objective and the survey method would

not scale with our test suite. Therefore we settled on well-defined,

repeatable target thresholds that cover a large spectrum of opti-

mization opportunities.

5.3 Experiment 1: Optimized Precision
In this experiment, we seek to evaluate the relative execution ben-

efit of AMPT-GA vis-á-vis the state-of-the-art Precimonious and

a naïve GA. For Precimonious to work on GPU applications, we

replace its variable interaction mechanism with our source code

transformation process using the same variables as in AMPT-GA. In

this experiment, we use Precimonious with its default terminating

conditions while AMPT-GA and Naïve use fifty stall generations so

that if after fifty rounds of mutation and crossover no better result

is found, then the process stops with the best result.

The performance in terms of FOM is shown in Fig. 3 for the

three protocols. The foremost goal of AMPT-GA is to improve

the performance of the target application and we accomplish that

for all but the tightest error constraint. For calibration, the FOM

with all double variables is 267.6 while with all floats it is 360.0.

AMPT-GA outperforms Precimonious for two error thresholds (2.5,

3.6) while under-performing for the tightest threshold by 4.2%,

due to the inaccuracies in its performance model (quantified in

Experiment 3). For the 2.5 case, Precimonious is not designed with

group casting in mind, and it is unable to achieve the same level of

performance gain as AMPT-GA. For the 3.6 case, pre-population

helps AMPT-GA identify a solution with higher performance (near

the all-float case) because mutations and crossovers are driven

toward this solution point. This allows AMPT-GA to outperform

even the naïve solution significantly for the highest threshold case.

The slight underperformance compared to the naïve solution in the

other cases is traded off with the reduced number of executions

in the filtering operation. In Fig. 4, we see the number of program

executions for the three protocols. Expectedly, naïve has by far

the highest number of executions, while AMPT-GAwithout the
execution filter comes close. With the execution filter, AMPT-GA

is either smaller than or comparable to the number of executions

of Precimonious. We see a tradeoff between speedup achieved and

solution generation.
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Figure 3: We compare the applica-
tion’s performance after precision op-
timization using the “Figure of Merit”
(FOM), synonymous with throughput,
normalized to the FOMwith all floats.
AMPT-GA is able to outperform Prec-
imonious for two of the three thresh-
olds, and it also outperforms the
naïve solution for the top threshold.

Figure 4: The number of function evalua-
tions are shown for the three approaches.
The naïve approach uses the most exe-
cutions as it has no program knowledge.
Precimonious uses a similar number of
executions in its delta-debugging process
as AMPT-GA. Also shown is AMPT-GA
without the execution filter, showing the
filter is highly effective.

Figure 5: The efficiency of the three ap-
proaches. Efficiency is calculated as the
FOMby thenumber of programexecutions.
AMPT-GA is the most efficient approach
for all three error thresholds.

Figure 6: The FOM increase over num-
ber of program executions is shown
for all three approaches. AMPT-GA is
able to identify better configurations
more quickly compared to the others.

Figure 7: The error thresholds and actual
errors are shown for the three methods.
For the 2.5 threshold, Precimonious does
not take advantage of its available error
headroom, due to being stuck in a lo-
cal minima. AMPT-GA follows the limit
fairly closely for all points, leveraging the
available error headroom.

Figure 8: The error CDF is shown for the
PV with a target error of 2.5 for inputs
that are near the tested input. These re-
sults show that most of the neighbors
(80%) fall within the error bound, so the
result can be generalized with 80% confi-
dence in this space.

The efficiency of the various solutions, which is the FOM by the

number of executions, is shown in Fig. 5. The number of program

executions is directly proportional to the wallclock time spent by a

technique to find the optimal PV. Our example search space is very

large (2
76
), so an efficient algorithm in terms of program executions

is very important for finding precision vectors, and AMPT-GA is

the most efficient of the three approaches. With only 10% of the

executions used by the naïve solution, AMPT-GA is able to achieve

96.3% of the speedup in the 2.5 case. Even in the 0.65 case, AMPT-

GA has higher efficiency than Precimonious despite finding a lower

performing solution. The efficiency benefit over Precimonious is 14-

63% and over naïve is 563-577%. The benefit of AMPT-GA becomes

more pronounced as the error threshold increases because AMPT-

GA has more room for aggressive reduced precision.

Fig. 6 shows the efficiency gain of each algorithm per program

execution. The results shows that AMPT-GA is able to converge

faster to a higher FOM solution when compared with the other

two approaches. This happens because the GA can make big jumps

unlike the more local search of delta debugging.

5.4 Experiment 2: Error Threshold Adherence
In this experiment, we validate that the PVs selected in the pre-

vious experiment satisfy the user-defined error constraint. Fig. 7

shows the performance of each approach and its ability to leverage

available error. These results show that all approaches satisfy the

error constraints, whether tight or loose. However, Precimonious is

unable to leverage available error headroom for the 2.5 threshold.

5.5 Experiment 3: Component Testing
This experiment examines the impact of AMPT-GA’s various com-

ponents on the FOM metric. Figure 9 shows the resulting FOM for

AMPT-GAwith different features enabled and disabled for the T=2.5

case. We run AMPT-GA with all of its features, mirroring the result
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Figure 9: The FOM for the T=2.5 case is shown with differ-
ent modules of AMPT-GA activated. The far left case re-
places the performance model with actual program execu-
tionswhere it performs best, but at the cost of 10x additional
executions. The grouping and hyper-dimensional space mu-
tations has the largest impact, while the execution filter and
the prepopulation havemarginal impact, for this specific er-
ror threshold.

in Experiment 1 (labeled AMPT-GA). The first component com-

parison we make is against the naïve case where the performance,

but not efficiency, is higher than in AMPT-GA. This is because

the naïve case uses actual program performance rather than the

static performance model, which allows it to measure the impacts

of data movement and other non-arithmetic or dynamic operations

that AMPT-GA does not model. Additionally some scores from our

performance model are inaccurate because of un-modeled dynamic

behaviors, resulting in execution filtering of potentially better can-

didate PVs. We then compare the impacts of including the all-float

and all-double case in our initial population, labeled as population

seeding in the figure. This has only a minor impact on the search

because it steers the search toward the most aggressive (all float)

case during the mutation/crossover operations, provided it meets

the error constraints.

The second feature enables the group mutation without the pre-

population, as the hyper-dimensional space withG = 25%. This has

the largest impact as it helps AMPT-GA overcome local mimima

issues. The final feature, execution filter, has no impact on the

performance, though it does significantly reduce the number of

program executions as seen in Experiment 1. There is no impact

because the GA to select the PV is driven by the performance model

score, which is the same in the full AMPT-GA and AMPT-GAminus

execution filter. When execution filter is tuned to randomly pass

10% of the rejected PVs, we achieve only minute FOM improvement

over AMPT-GA.

5.6 Experiment 4: Local vs. Global Models
In this experiment, we quantify the benefit of using application-level

tuning over kernel or function level tuning. We observe that prior

works focus on per-line (e.g., [5, 20]) or per-kernel (e.g., [11, 21])

optimizations. We validate this claim by running a simple linearity

test between the individual kernel contributions and the application-

level contribution to error and performance.

Table 1: Independent Kernel Vs. Application Level (All Float
Case)

FOM Gain Error
K1 32,286 3.596

K2 54,561 2.994

K3 8,701 0.000

K1+K2+K3 95,549 6.590

Application Level 81,088 (-15.1%) 3.124 (-52.6%)

Table 1 shows the performance gain and error from the three

kernels in LULESH, simplified as K1, K2, and K3, for a particular

locally optimized precision vector. For example, in K1, the PV terms

that impact K1 are set to all-float and the terms for K2 and K3

are set to all-double and the resulting application-level change in

FOM and error are shown. The same is done for K2 and K3. If the

kernel-level tuning is sufficient, then the total application FOM

should be a summation of the individual kernel-level gains, but the

application-level metric is actually lower by 15.1%. Similarly, for

the error, the overall system error is much lower (52.6%) than the

individual kernel errors combined.

5.7 Experiment 5: Precision Vector
Generalization

In this experiment, we test the ability to generalize to inputs within

a small range of the user-provided input value. For LULESH, we

modify the template source code that defines the symmetric input

evaluation points. These points lie in [0, 1.125], and we apply a

distance (variance) of 0.1 to these points as x ′ = x + 0.1 · N(0, 1).

From this we collect 100 samples, and the CDF for these sample

errors is shown in Fig. 8. The results have a confidence of 0.80 for

the 100 test cases. This indicates that our searching time can be

amortized across inputs that are nearby to these test inputs if the

confidence level is acceptable to the end user.

5.8 Evaluation with Rodinia Benchmark
programs

We evaluate our approach with three programs from the Rodinia

GPU benchmark suite, namely, LavaMD, Backprop andCFD. LavaMD,

a Molecular Dynamics program, is a single kernel program with 15

floating point variables. Backprop implements an algorithm in the

domain of Pattern Recognition and is a two kernel benchmark with

21 floating point variables. CFD, a standard benchmark in the field

of Computational Fluid Dynamics, is a four kernel program with

26 floating point variables. In the Backprop kernels, the choice of

the precision of the floating point variables is between FP16 and

FP32. All the other benchmarks are evaluated for choice between

FP32 and FP64. These programs return single or multiple arrays

of floating point data as the end result. Application-generic error

is obtained by the average of the mean square root of the error

associated with each element of each array.The error thresholds

are chosen as with LULESH—analyzing the error behavior of the

program with 1,000 unique PVs and selecting the 25%, 50%, and 75%

quartile error values. Fig. 10, Fig. 11, and Fig. 12 show the results

for the three different applications. We plot the same metrics as
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Figure 10: LavaMD results: Naïve GA achieves the highest FOM values in all the cases but uses significantly larger number of
program executions compared to the other approaches. FOM achieved by AMPT-GA is higher than that by Precimonious.

Figure 11: Backprop results: AMPT-GA achieves the same FOM values as Naïve GAwhile using less than a third of the number
of executions. AMPT-GA emerges as the most efficient approach for all three error thresholds.

Figure 12: CFD results: Naïve GA and AMPT-GA achieve the highest FOM values in all the cases but Naïve uses significantly
larger number of program executions compared to AMPT-GA.

before—FOM, number of program executions, and efficiency and

show for the naïve case, Precimonious, and AMPT-GA. We believe

that the drop in FOM gain by AMPT-GA with respect to Precimo-

nious in LavaMD is because of the smaller length of the PV (smaller

by a factor of 5 in comparison to LULESH), which hugely reduces

the search space and hence, both algorithms are able to sufficiently

explore the search space resulting in close FOM values. With Back-

prop and CFD, AMPT-GA achieves the highest efficiency in all the

cases, excepting the 2e-6 error threshold case in CFD. The general

trend with these two benchmarks is that AMPT-GA achieves the

FOM values as high as the Naïve GA and significantly higher than

that of Precimonious but consumes more executions than Precimo-

nious. The increase in FOM compensates for this additional number

of executions making AMPT-GA the most efficient approach.

6 DISCUSSION
GPU-specific benefit. One benefit of reducing precision, specific

to GPUs, is that it reduces communication across the CPU-GPU in-

terface, say through a PCIe interface. This is a bandwidth-constrained

interface [25], with throughput being far lower than the memory

bandwidth of the GPU. Reducing precision has the effect of reduc-

ing the memory traffic on this interface and speeds up the total

execution time. For our test applications, the traffic volume is not

significant enough for this effect to be substantial, but for applica-

tions with higher data transfer volumes [17] this will be important.

Error Accuracy and Overall Speedup. Many mixed precision pa-

pers focus on precise error calculations and guarantees for satisfy-

ing E ≤ T . These apply at the operation level while guarantees at

the application level require executing the actual program which

creates a paradox: if the program must be executed in double preci-

sion to determine an error guarantee, then executing it in mixed
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precision provides no runtime benefit since the exact result is al-

ready known. Our results on generalizing the PV about an input

region are useful in understanding risk.

7 CONCLUSION
In this paper, we present AMPT-GA, a solution for optimizing the

precision of variables in applications that have demanding GPU ker-

nels. It brings three innovations: static analysis to identify groups

of variables whose precisions should be changed together, a search

technique that is aware of the relevant penalties such as type cast-

ing, and a filtering technique that can eliminate unprofitable PVs

without expensive program execution. AMPT-GA improves the per-

formance of LULESHwith 77.1% higher speedup than Precimonious

for a mid-range error threshold for LULESH, an important proxy

application for the exascale co-design efforts of the US Department

of Energy (DOE). AMPT-GA achieves 96.3% of the speedup com-

pared to a naïve search using only 10% of the program executions.

AMPT-GA outperforms Precimonious in efficiency by 14-63% and

naïve “black box” search by 563-577%. In future, we will create an

error model that can act as another execution filter and further

reduce the number of program executions.
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